Majority Colorings of Sparse Digraphs

Author:

Anastos Michael,Lamaison Ander,Steiner Raphael,Szabó Tibor

Abstract

A majority coloring of a directed graph is a vertex-coloring in which every vertex has the same color as at most half of its out-neighbors. Kreutzer, Oum, Seymour, van der Zypen and Wood proved that every digraph has a majority $4$-coloring and conjectured that every digraph admits a majority $3$-coloring. They observed that the Local Lemma implies the conjecture for digraphs of large enough minimum out-degree if, crucially, the maximum in-degree is bounded by a(n exponential) function of the minimum out-degree. Our goal in this paper is to develop alternative methods that allow the verification of the conjecture for natural, broad digraph classes, without any restriction on the in-degrees. Among others, we prove the conjecture 1) for digraphs with chromatic number at most $6$ or dichromatic number at most $3$, and thus for all planar digraphs; and 2) for digraphs with maximum out-degree at most $4$. The benchmark case of $r$-regular digraphs remains open for $r \in [5,143]$. Our inductive proofs depend on loaded inductive statements about precoloring extensions of list-colorings. This approach also gives rise to stronger conclusions, involving the choosability version of majority coloring. We also give further evidence towards the existence of majority-$3$-colorings by showing that every digraph has a fractional majority 3.9602-coloring. Moreover we show that every digraph with large enough minimum out-degree has a fractional majority $(2+\varepsilon)$-coloring.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Majority choosability of countable graphs;European Journal of Combinatorics;2024-03

2. Majority choosability of 1-planar digraph;Czechoslovak Mathematical Journal;2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3