Abstract
The rank of the adjacency matrix of a graph is bounded above by the number of distinct non-zero rows of that matrix. In general, the rank is lower than this number because there may be some non-trivial linear combination of the rows equal to zero. We show the somewhat surprising result that this never occurs for the class of cographs. Therefore, the rank of a cograph is equal to the number of distinct non-zero rows of its adjacency matrix.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献