Characterizing Planar Tanglegram Layouts and Applications to Edge Insertion Problems
-
Published:2023-06-02
Issue:2
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
Tanglegrams are formed by taking two rooted binary trees $T$ and $S$ with the same number of leaves and uniquely matching each leaf in $T$ with a leaf in $S$. They are usually represented using layouts that embed the trees and matching in the plane. Given the numerous ways to construct a layout, one problem of interest is the Tanglegram Layout Problem, which is to efficiently find a layout that minimizes the number of crossings. This parallels a similar problem involving drawings of graphs, where a common approach is to insert edges into a planar subgraph. In this paper, we explore inserting edges into a planar tanglegram. Previous results on planar tanglegrams include a Kuratowski Theorem, enumeration, and an algorithm for finding a planar layout. We build on these results and characterize all planar layouts of a planar tanglegram. We then apply this characterization to construct a quadratic-time algorithm that inserts a single edge optimally. Finally, we generalize some results to multiple edge insertion.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics