Abstract
Recently, Fici, Restivo, Silva, and Zamboni defined a $k$-anti-power to be a word of the form $w_1w_2\cdots w_k$, where $w_1,w_2,\ldots,w_k$ are distinct words of the same length. They defined $AP(x,k)$ to be the set of all positive integers $m$ such that the prefix of length $km$ of the word $x$ is a $k$-anti-power. Let ${\bf t}$ denote the Thue-Morse word, and let $\mathcal F(k)=AP({\bf t},k)\cap(2\mathbb Z^+-1)$. For $k\geq 3$, $\gamma(k)=\min(\mathcal F(k))$ and $\Gamma(k)=\max((2\mathbb Z^+-1)\setminus\mathcal F(k))$ are well-defined odd positive integers. Fici et al. speculated that $\gamma(k)$ grows linearly in $k$. We prove that this is indeed the case by showing that $1/2\leq\displaystyle{\liminf_{k\to\infty}}(\gamma(k)/k)\leq 9/10$ and $1\leq\displaystyle{\limsup_{k\to\infty}}(\gamma(k)/k)\leq 3/2$. In addition, we prove that $\displaystyle{\liminf_{k\to\infty}}(\Gamma(k)/k)=3/2$ and $\displaystyle{\limsup_{k\to\infty}}(\Gamma(k)/k)=3$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Local Maximal Equality-Free Periodicities;IFIP Advances in Information and Communication Technology;2023
2. Functions on antipower prefix lengths of the Thue–Morse word;Discrete Mathematics;2020-02
3. On the Cyclic Regularities of Strings;IFIP Advances in Information and Communication Technology;2019
4. Online Algorithms on Antipowers and Antiperiods;String Processing and Information Retrieval;2019
5. Anti-powers in infinite words;Journal of Combinatorial Theory, Series A;2018-07