Some Applications of Wagner's Weighted Subgraph Counting Polynomial
-
Published:2021-10-22
Issue:4
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Bencs Ferenc,Csikvári Péter,Regts Guus
Abstract
We use Wagner's weighted subgraph counting polynomial to prove that the partition function of the anti-ferromagnetic Ising model on line graphs is real rooted and to prove that roots of the edge cover polynomial have absolute value at most $4$. We more generally show that roots of the edge cover polynomial of a $k$-uniform hypergraph have absolute value at most $2^k$, and discuss applications of this to the roots of domination polynomials of graphs. We moreover discuss how our results relate to efficient algorithms for approximately computing evaluations of these polynomials.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the zeroes of hypergraph independence polynomials;Combinatorics, Probability and Computing;2023-09-21
2. Absence of zeros implies strong spatial mixing;Probability Theory and Related Fields;2023-02-03