On Factors of Independent Transversals in $k$-Partite Graphs
-
Published:2021-11-19
Issue:4
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
A $[k,n,1]$-graph is a $k$-partite graph with parts of order $n$ such that the bipartite graph induced by any pair of parts is a matching. An independent transversal in such a graph is an independent set that intersects each part in a single vertex. A factor of independent transversals is a set of $n$ pairwise-disjoint independent transversals. Let $f(k)$ be the smallest integer $n_0$ such that every $[k,n,1]$-graph has a factor of independent transversals assuming $n \geqslant n_0$. Several known conjectures imply that for $k \geqslant 2$, $f(k)=k$ if $k$ is even and $f(k)=k+1$ if $k$ is odd. While a simple greedy algorithm based on iterating Hall's Theorem shows that $f(k) \leqslant 2k-2$, no better bound is known and in fact, there are instances showing that the bound $2k-2$ is tight for the greedy algorithm. Here we significantly improve upon the greedy algorithm bound and prove that $f(k) \leqslant 1.78k$ for all $k$ sufficiently large, answering a question of MacKeigan.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Packing list‐colorings;Random Structures & Algorithms;2023-07-31