A $q$-Analogue of some Binomial Coefficient Identities of Y. Sun
-
Published:2011-03-31
Issue:1
Volume:18
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Guo Victor J. W.,Yang Dan-Mei
Abstract
We give a $q$-analogue of some binomial coefficient identities of Y. Sun [Electron. J. Combin. 17 (2010), #N20] as follows: \begin{align*} \sum_{k=0}^{\lfloor n/2\rfloor}{m+k\brack k}_{q^2}{m+1\brack n-2k}_{q} q^{n-2k\choose 2} &={m+n\brack n}_{q}, \\ \sum_{k=0}^{\lfloor n/4\rfloor}{m+k\brack k}_{q^4}{m+1\brack n-4k}_{q} q^{n-4k\choose 2} &=\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k{m+k\brack k}_{q^2}{m+n-2k\brack n-2k}_{q}, \end{align*} where ${n\brack k}_q$ stands for the $q$-binomial coefficient. We provide two proofs, one of which is combinatorial via partitions.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bernoulli numbers and symmetric functions;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2019-12-06
2. Two Symmetric Identities Involving Complete and Elementary Symmetric Functions;Bulletin of the Malaysian Mathematical Sciences Society;2019-04-20
3. Some notes on the(q,t)-Stirling numbers;Discrete Mathematics;2019-03