Abstract
Motivated by an old problem known as Ryser's Conjecture, we prove that for $r=4$ and $r=5$, there exists $\epsilon>0$ such that every $r$-partite $r$-uniform hypergraph $\cal H$ has a cover of size at most $(r-\epsilon)\nu(\cal H)$, where $\nu(\cal H)$ denotes the size of a largest matching in $\cal H$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献