Rainbow Paths and Large Rainbow Matchings
-
Published:2022-01-28
Issue:1
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Aharoni Ron,Berger Eli,Chudnovsky Maria,Zerbib Shira
Abstract
A conjecture of the first two authors is that $n$ matchings of size $n$ in any graph have a rainbow matching of size $n-1$. We prove a lower bound of $\frac{2}{3}n-1$, improving on the trivial $\frac{1}{2}n$, and an analogous result for hypergraphs. For $\{C_3,C_5\}$-free graphs and for disjoint matchings we obtain a lower bound of $\frac{3n}{4}-O(1)$. We also discuss a conjecture on rainbow alternating paths, that if true would yield a lower bound of $n-\sqrt{2n}$. We prove the non-alternating (ordinary paths) version of this conjecture.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rainbow Even Cycles;SIAM Journal on Discrete Mathematics;2024-04-09
2. Short Proofs of Rainbow Matchings Results;International Mathematics Research Notices;2022-07-17