Abstract
In 2019, Czabarka, Dankelmann and Székely showed that for every undirected graph of order $n$, the minimum degree threshold for diameter two orientability is $\frac{n}{2}+ \Theta(\ln n)$. In this paper, we consider bipartite graphs and give a sufficient condition in terms of the minimum degree for such graphs to have oriented diameter three. We in particular prove that for balanced bipartite graphs of order $n$, the minimum degree threshold for diameter three orientability is $\frac{n}{4}+\Theta(\ln n)$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献