Abstract
An edge-colored graph is called rainbow if all the colors on its edges are distinct. Let ${\cal G}$ be a family of graphs. The anti-Ramsey number $AR(n,{\cal G})$ for ${\cal G}$, introduced by Erdős et al., is the maximum number of colors in an edge coloring of $K_n$ that has no rainbow copy of any graph in ${\cal G}$. In this paper, we determine the anti-Ramsey number $AR(n,\Omega_2)$, where $\Omega_2$ denotes the family of graphs that contain two independent cycles.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献