Generalized Rainbow Turán Numbers
-
Published:2022-06-03
Issue:2
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Gerbner Dániel,Mészáros Tamás,Methuku Abhishek,Palmer Cory
Abstract
Alon and Shikhelman [J. Comb. Theory, B. 121 (2016)] initiated the systematic study of the following generalized Turán problem: for fixed graphs H and F and an integer n, what is the maximum number of copies of H in an n-vertex F-free graph?
An edge-colored graph is called rainbow if all its edges have different colors. The rainbow Turán number of F is defined as the maximum number of edges in a properly edge-colored graph on n vertices with no rainbow copy of F. The study of rainbow Turán problems was initiated by Keevash, Mubayi, Sudakov and Verstraete [Comb. Probab. Comput. 16 (2007)].
Motivated by the above problems, we study the following problem: What is the maximum number of copies of F in a properly edge-colored graph on n vertices without a rainbow copy of F? We establish several results, including when F is a path, cycle or tree.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rainbow Saturation for Complete Graphs;SIAM Journal on Discrete Mathematics;2024-03-14
2. Graphs without a Rainbow Path of Length 3;SIAM Journal on Discrete Mathematics;2024-02-02
3. Generalized Turán results for intersecting cliques;Discrete Mathematics;2024-01