Distinguishability of Infinite Groups and Graphs

Author:

Smith Simon M,Tucker Thomas W,Watkins Mark E

Abstract

The distinguishing number of a group $G$ acting faithfully on a set $V$ is the least number of colors needed to color the elements of $V$ so that no non-identity element of the group preserves the coloring. The distinguishing number of a graph is the distinguishing number of its automorphism group acting on its vertex set. A connected graph $\Gamma$ is said to have connectivity 1 if there exists a vertex $\alpha \in V\Gamma$ such that $\Gamma \setminus \{\alpha\}$ is not connected. For $\alpha \in V$, an orbit of the point stabilizer $G_\alpha$ is called a suborbit of $G$.We prove that every nonnull, primitive graph with infinite diameter and countably many vertices has distinguishing number $2$. Consequently, any nonnull, infinite, primitive, locally finite graph is $2$-distinguishable; so, too, is any infinite primitive permutation group with finite suborbits. We also show that all denumerable vertex-transitive graphs of connectivity 1 and all Cartesian products of connected denumerable graphs of infinite diameter have distinguishing number $2$. All of our results follow directly from a versatile lemma which we call The Distinct Spheres Lemma.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The cost of 2-distinguishing hypercubes;Discrete Mathematics;2021-09

2. Distinguishing orthogonality graphs;Journal of Graph Theory;2021-06-16

3. A Note on Computable Distinguishing Colorings;Lobachevskii Journal of Mathematics;2021-04

4. Symmetry Parameters for Mycielskian Graphs;Association for Women in Mathematics Series;2021

5. Distinguishing density and the Distinct Spheres Condition;European Journal of Combinatorics;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3