The Number of Moves of the Largest Disc in Shortest Paths on Hanoi Graphs

Author:

Aumann Simon,Götz Katharina A.M.,Hinz Andreas M.,Petr Ciril

Abstract

In contrast to the widespread interest in the Frame-Stewart conjecture (FSC) about the optimal number of moves in the classical Tower of Hanoi task with more than three pegs, this is the first study of the question of investigating shortest paths in Hanoi graphs $H_p^n$ in a more general setting. Here $p$ stands for the number of pegs and $n$ for the number of discs in the Tower of Hanoi interpretation of these graphs. The analysis depends crucially on the number of largest disc moves (LDMs). The patterns of these LDMs will be coded as binary strings of length $p-1$ assigned to each pair of starting and goal states individually. This will be approached both analytically and numerically. The main theoretical achievement is the existence, at least for all $n\geqslant p(p-2)$, of optimal paths where $p-1$ LDMs are necessary. Numerical results, obtained by an algorithm based on a modified breadth-first search making use of symmetries of the graphs, lead to a couple of conjectures about some cases not covered by our ascertained results. These, in turn, may shed some light on the notoriously open FSC.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Open Problems for Hanoi and Sierpiński Graphs;Electronic Notes in Discrete Mathematics;2017-12

2. A survey and classification of Sierpiński-type graphs;Discrete Applied Mathematics;2017-01

3. Computational Solution of an Old Tower of Hanoi Problem;Electronic Notes in Discrete Mathematics;2016-09

4. An efficient algorithm to determine all shortest paths in Sierpiński graphs;Discrete Applied Mathematics;2014-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3