Sequentially Perfect and Uniform One-Factorizations of the Complete Graph

Author:

Dinitz Jeffrey H.,Dukes Peter,Stinson Douglas R.

Abstract

In this paper, we consider a weakening of the definitions of uniform and perfect one-factorizations of the complete graph. Basically, we want to order the $2n-1$ one-factors of a one-factorization of the complete graph $K_{2n}$ in such a way that the union of any two (cyclically) consecutive one-factors is always isomorphic to the same two-regular graph. This property is termed sequentially uniform; if this two-regular graph is a Hamiltonian cycle, then the property is termed sequentially perfect. We will discuss several methods for constructing sequentially uniform and sequentially perfect one-factorizations. In particular, we prove for any integer $n \geq 1$ that there is a sequentially perfect one-factorization of $K_{2n}$. As well, for any odd integer $m \geq 1$, we prove that there is a sequentially uniform one-factorization of $K_{2^t m}$ of type $(4,4,\dots,4)$ for all integers $t \geq 2 + \lceil \log_2 m \rceil$ (where type $(4,4,\dots,4)$ denotes a two-regular graph consisting of disjoint cycles of length four).

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A note on two orthogonal totally $$C_4$$-free one-factorizations of complete graphs;Boletín de la Sociedad Matemática Mexicana;2021-02-23

2. On strong Skolem starters for ℤpq;AKCE International Journal of Graphs and Combinatorics;2020-04-23

3. Optimal Schedule for All-to-All Personalized Communication in Multiprocessor Systems;ACM Transactions on Parallel Computing;2019-06-24

4. Perfect 1-factorizations;Mathematica Slovaca;2019-05-21

5. On the honeymoon Oberwolfach problem;Journal of Combinatorial Designs;2019-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3