Author:
Aldred Robert E.L.,Fujisawa Jun
Abstract
A graph $G$ with at least $2m+2$ edges is said to be distance $d$ $m$-extendable if for any matching $M$ in $G$ with $m$ edges in which the edges lie pair-wise distance at least $d$, there exists a perfect matching in $G$ containing $M$. In a previous paper, Aldred and Plummer proved that every $5$-connected triangulation of the plane or the projective plane of even order is distance $5$ $m$-extendable for any $m$. In this paper we prove that the same conclusion holds for every triangulation of the torus or the Klein bottle.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献