On Absolute Points of Correlations of $\mathrm{PG}(2,q^n)$
-
Published:2020-05-29
Issue:2
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
D'haeseleer Jozefien,Durante Nicola
Abstract
Let $V$ be a $(d+1)$-dimensional vector space over a field $\mathbb{F}$. Sesquilinear forms over $V$ have been largely studied when they are reflexive and hence give rise to a (possibly degenerate) polarity of the $d$-dimensional projective space $\mathrm{PG}(V)$. Everything is known in this case for both degenerate and non-degenerate reflexive forms if $\mathbb{F}$ is either ${\mathbb R}$, ${\mathbb C}$ or a finite field ${\mathbb F}_q$. In this paper we consider degenerate, non-reflexive sesquilinear forms of $V=\mathbb{F}_{q^n}^3$. We will see that these forms give rise to degenerate correlations of $\mathrm{PG}(2,q^n)$ whose set of absolute points are, besides cones, the (possibly degenerate) $C_F^m$-sets studied by Donati and Durante in 2014. In the final section we collect some results from the huge work of B.C. Kestenband regarding what is known for the set of the absolute points of correlations in $\mathrm{PG}(2,q^n)$ induced by a non-degenerate, non-reflexive sesquilinear form of $V=\mathbb{F}_{q^n}^3$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Absolute points of correlations of $$PG(4,q^n)$$;Journal of Algebraic Combinatorics;2022-05-03
2. Twisted hyperbolic flocks;Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial;2021-04-17