The Many Formulae for the Number of Latin Rectangles

Author:

Stones Douglas S.

Abstract

A $k \times n$ Latin rectangle $L$ is a $k \times n$ array, with symbols from a set of cardinality $n$, such that each row and each column contains only distinct symbols. If $k=n$ then $L$ is a Latin square. Let $L_{k,n}$ be the number of $k \times n$ Latin rectangles. We survey (a) the many combinatorial objects equivalent to Latin squares, (b) the known bounds on $L_{k,n}$ and approximations for $L_n$, (c) congruences satisfied by $L_{k,n}$ and (d) the many published formulae for $L_{k,n}$ and related numbers. We also describe in detail the method of Sade in finding $L_{7,7}$, an important milestone in the enumeration of Latin squares, but which was privately published in French. Doyle's formula for $L_{k,n}$ is given in a closed form and is used to compute previously unpublished values of $L_{4,n}$, $L_{5,n}$ and $L_{6,n}$. We reproduce the three formulae for $L_{k,n}$ by Fu that were published in Chinese. We give a formula for $L_{k,n}$ that contains, as special cases, formulae of (a) Fu, (b) Shao and Wei and (c) McKay and Wanless. We also introduce a new equation for $L_{k,n}$ whose complexity lies in computing subgraphs of the rook's graph.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sequential importance sampling for estimating expectations over the space of perfect matchings;The Annals of Applied Probability;2023-04-01

2. The number of labeled n-ary abelian groups and totally symmetric medial quasigroups;Journal of Algebraic Combinatorics;2023-01-28

3. Fun with Latin Squares;Recreational Mathematics Magazine;2023-01-01

4. Computing Autotopism Groups of Partial Latin Rectangles;ACM Journal of Experimental Algorithmics;2020-12-06

5. Computing autotopism groups of partial Latin rectangles: A pilot study;Computational and Mathematical Methods;2020-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3