Rowmotion on 321-Avoiding Permutations
-
Published:2023-07-14
Issue:3
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Adenbaum Ben,Elizalde Sergi
Abstract
We give a natural definition of rowmotion for $321$-avoiding permutations, by translating, through bijections involving Dyck paths and the Lalanne--Kreweras involution, the analogous notion for antichains of the positive root poset of type $A$. We prove that some permutation statistics, such as the number of fixed points, are homomesic under rowmotion, meaning that they have a constant average over its orbits.
Our setting also provides a more natural description of the celebrated Armstrong--Stump--Thomas equivariant bijection between antichains and non-crossing matchings in types $A$ and $B$, by showing that it is equivalent to the Robinson--Schensted--Knuth correspondence on $321$-avoiding permutations permutations.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Descents on nonnesting multipermutations;European Journal of Combinatorics;2023-10