Special Case of Rota's Basis Conjecture on Graphic Matroids
-
Published:2022-09-23
Issue:3
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Maezawa Shun-ichi,Yazawa Akiko
Abstract
Gian-Carlo Rota conjectured that for any $n$ bases $B_1,B_2,\ldots,B_n$ in a matroid of rank $n$, there exist $n$ disjoint transversal bases of $B_1,B_2,\ldots,B_n$. The conjecture for graphic matroids corresponds to the problem of an edge-decomposition as follows; If an edge-colored connected multigraph $G$ has $n-1$ colors and the graph induced by the edges colored with $c$ is a spanning tree for each color $c$, then $G$ has $n-1$ mutually edge-disjoint rainbow spanning trees. In this paper, we prove that edge-colored graphs where the edges colored with $c$ induce a spanning star for each color $c$ can be decomposed into rainbow spanning trees.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics