Chain Polynomials of Distributive Lattices are 75% Unimodal
-
Published:2005-03-14
Issue:1
Volume:12
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Björner Anders,Farley Jonathan David
Abstract
It is shown that the numbers $c_i$ of chains of length $i$ in the proper part $L\setminus\{0,1\}$ of a distributive lattice $L$ of length $\ell +2$ satisfy the inequalities $$c_0 < \ldots < c_{\lfloor{\ell /2}\rfloor} \quad\hbox{ and }\quad c_{\lfloor{3 \ell /4}\rfloor}>\ldots>c_{\ell}.$$ This proves 75% of the inequalities implied by the Neggers unimodality conjecture.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献