Coefficients of Gaussian Polynomials Modulo $N$
-
Published:2020-06-17
Issue:2
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
Let $\left[{n \atop k}\right]_q$ be a $q$-binomial coefficient. Stanley conjectured that the function $f_{k,R}(n) = \left|\left\{\alpha : [q^{\alpha}] \left[{n \atop k}\right]_q \equiv R \pmod{N}\right\}\right|$ is quasi-polynomial for $N$ prime. We prove this for any integer $N$ and obtain an expression for the generating function $F_{k,R}(x)$ for $f_{k,R}(n)$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献