Author:
Gessel Ira,Weinstein Jonathan,Wilf Herbert S.
Abstract
We identify a set of $d!$ signed points, called Toeplitz points, in ${{Z}}^d$, with the following property: for every $n>0$, the excess of the number of lattice walks of $n$ steps, from the origin to all positive Toeplitz points, over the number to all negative Toeplitz points, is equal to ${n\choose n/2}$ times the number of permutations of $\{1,2,\dots ,n\}$ that contain no ascending subsequence of length $>d$. We prove this first by generating functions, using a determinantal theorem of Gessel. We give a second proof by direct construction of an appropriate involution. The latter provides a purely combinatorial proof of Gessel's theorem by interpreting it in terms of lattice walks. Finally we give a proof that uses the Schensted algorithm.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献