Author:
Regev Amitai,Vershik Anatoly
Abstract
Asymptotic calculations are applied to study the degrees of certain sequences of characters of symmetric groups. Starting with a given partition $\mu$, we deduce several skew diagrams which are related to $\mu$. To each such skew diagram there corresponds the product of its hook numbers. By asymptotic methods we obtain some unexpected arithmetic properties between these products. The authors do not know "finite", nonasymptotic proofs of these results. The problem appeared in the study of the hook formula for various kinds of Young diagrams. The proofs are based on properties of shifted Schur functions, due to Okounkov and Olshanski. The theory of these functions arose from the asymptotic theory of Vershik and Kerov of the representations of the symmetric groups.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献