Display Sets of Normal and Tree-Child Networks
-
Published:2021-01-15
Issue:1
Volume:28
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Döcker Janosch,Linz Simone,Semple Charles
Abstract
Phylogenetic networks are leaf-labelled directed acyclic graphs that are used in computational biology to analyse and represent the evolutionary relationships of a set of species or viruses. In contrast to phylogenetic trees, phylogenetic networks have vertices of in-degree at least two that represent reticulation events such as hybridisation, lateral gene transfer, or reassortment. By systematically deleting various combinations of arcs in a phylogenetic network $\mathcal N$, one derives a set of phylogenetic trees that are embedded in $\mathcal N$. We recently showed that the problem of deciding if two binary phylogenetic networks embed the same set of phylogenetic trees is computationally hard, in particular, we showed it to be $\Pi^P_2$-complete. In this paper, we establish a polynomial-time algorithm for this decision problem if the initial two networks consist of a normal network and a tree-child network; two well-studied topologically restricted subclasses of phylogenetic networks, with normal networks being more structurally constrained than tree-child networks. The running time of the algorithm is quadratic in the size of the leaf sets.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Non-essential arcs in phylogenetic networks;Journal of Computer and System Sciences;2022-09