Abstract
Let $n>1$ be an odd integer, and let $\zeta$ be a primitive $n$th root of unity in the complex field. Via the Eigenvector-eigenvalue Identity, we show that$$\sum_{\tau\in D(n-1)}\mathrm{sign}(\tau)\prod_{j=1}^{n-1}\frac{1+\zeta^{j-\tau(j)}}{1-\zeta^{j-\tau(j)}}=(-1)^{\frac{n-1}{2}}\frac{((n-2)!!)^2}{n},$$where $D(n-1)$ is the set of all derangements of $1,\ldots,n-1$.This confirms a previous conjecture of Z.-W. Sun. Moreover, for each $\delta=0,1$ we determine the value of $\det[x+m_{jk}]_{1\leqslant j,k\leqslant n-1}$ completely, where$$m_{jk}=\begin{cases}(1+\zeta^{j-k})/(1-\zeta^{j-k})&\text{if}\ j\not=k,\\\delta&\text{if}\ j=k.\end{cases}$$
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献