Author:
Czygrinow Andrzej,Fan Genghua,Hurlbert Glenn,Kierstead H. A.,Trotter William T.
Abstract
Dirac's classic theorem asserts that if ${\bf G}$ is a graph on $n$ vertices, and $\delta({\bf G})\ge n/2$, then ${\bf G}$ has a hamilton cycle. As is well known, the proof also shows that if $\deg(x)+\deg(y)\ge(n-1)$, for every pair $x$, $y$ of independent vertices in ${\bf G}$, then ${\bf G}$ has a hamilton path. More generally, S. Win has shown that if $k\ge 2$, ${\bf G}$ is connected and $\sum_{x\in I}\deg(x)\ge n-1$ whenever $I$ is a $k$-element independent set, then ${\bf G}$ has a spanning tree ${\bf T}$ with $\Delta({\bf T})\le k$. Here we are interested in the structure of spanning trees under the additional assumption that ${\bf G}$ does not have a spanning tree with maximum degree less than $k$. We show that apart from a single exceptional class of graphs, if $\sum_{x\in I}\deg(x)\ge n-1$ for every $k$-element independent set, then ${\bf G}$ has a spanning caterpillar ${\bf T}$ with maximum degree $k$. Furthermore, given a maximum path $P$ in ${\bf G}$, we may require that $P$ is the spine of ${\bf T}$ and that the set of all vertices whose degree in ${\bf T}$ is $3$ or larger is independent in ${\bf T}$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Spanning Trees Whose Stems are Caterpillars;Studia Scientiarum Mathematicarum Hungarica;2024-07-24
2. The number of bounded‐degree spanning trees;Random Structures & Algorithms;2022-08-27
3. Spanning trees with minimum number of leaves in the square graph of a tree;Journal of Computational Methods in Sciences and Engineering;2016-03-11
4. Spanningk-ended trees of bipartite graphs;Discrete Mathematics;2013-12
5. Spanning Caterpillars Having at Most k Leaves;Computational Geometry and Graphs;2013