Monochromatic Paths in 2-Edge-Coloured Graphs and Hypergraphs
-
Published:2023-03-24
Issue:1
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
We answer a question of Gyárfás and Sárközy from 2013 by showing that every 2-edge-coloured complete 3-uniform hypergraph can be partitioned into two monochromatic tight paths of different colours. We also give a lower bound for the number of tight paths needed to partition any 2-edge-coloured complete k-partite k-uniform hypergraph. Finally, we show that any 2-edge coloured complete bipartite graph has a partition into a monochromatic cycle and a monochromatic path, of different colours, unless the colouring is a split colouring.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics