A Lower Bound on the Average Degree Forcing a Minor
-
Published:2020-04-03
Issue:1
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Norin Sergey,Reed Bruce,Thomason Andrew,Wood David R.
Abstract
We show that for sufficiently large $d$ and for $t\geq d+1$, there is a graph $G$ with average degree $(1-\varepsilon)\lambda t \sqrt{\ln d}$ such that almost every graph $H$ with $t$ vertices and average degree $d$ is not a minor of $G$, where $\lambda=0.63817\dots$ is an explicitly defined constant. This generalises analogous results for complete graphs by Thomason (2001) and for general dense graphs by Myers and Thomason (2005). It also shows that an upper bound for sparse graphs by Reed and Wood (2016) is best possible up to a constant factor.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献