Connector-Breaker Games on Random Boards

Author:

Clemens Dennis,Kirsch Laurin,Mogge Yannick

Abstract

By now, the Maker-Breaker connectivity game on a complete graph $K_n$ or on a random graph $G\sim G_{n,p}$ is well studied. Recently, London and Pluhár suggested a variant in which Maker always needs to choose her edges in such a way that her graph stays connected. By their results it follows that for this connected version of the game, the threshold bias on $K_n$ and the threshold probability on $G\sim G_{n,p}$ for winning the game drastically differ from the corresponding values for the usual Maker-Breaker version, assuming Maker's bias to be 1. However, they observed that the threshold biases of both versions played on $K_n$ are still of the same order if instead Maker is allowed to claim two edges in every round. Naturally, this made London and Pluhár ask whether a similar phenomenon can be observed when a $(2:2)$ game is played on $G_{n,p}$. We prove that this is not the case, and determine the threshold probability for winning this game to be of size $n^{-2/3+o(1)}$.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3