The Positive Minimum Degree Game on Sparse Graphs
-
Published:2012-01-21
Issue:1
Volume:19
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Balogh József,Pluhár András
Abstract
In this note we investigate a special form of degree games defined by D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó. Usually the board of a graph game is the edge set of $K_n$, the complete graph on $n$ vertices. Maker and Breaker alternately claim an edge, and Maker wins if his edges form a subgraph with prescribed properties; here a certain minimum degree. In the special form the board is no longer the whole edge set of $K_n$, Maker first selects as few edges of $K_n$ as possible in order to win, and our goal is to compute the necessary size of that board. Solving a question of Hefetz et al., we show, using the discharging method, that the sharp bound is around $10n/7$ for the positive minimum degree game.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献