On Davenport Constant of the Group $C_2^{r-1} \oplus C_{2k}$
-
Published:2023-03-10
Issue:1
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Abstract
Let $G$ be a finite abelian group. The Davenport constant $\mathsf{D}(G)$ is the maximal length of minimal zero-sum sequences over $G$. For groups of the form $C_2^{r-1} \oplus C_{2k}$ the Davenport constant is known for $r\leq 5$. In this paper, we get the precise value of $\mathsf{D}(C_2^{5} \oplus C_{2k})$ for $k\geq 149$. It is also worth pointing out that our result can imply the precise value of $\mathsf{D}(C_2^{4} \oplus C_{2k})$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics