Abstract
It is proved that the number of permutations of the set $\{1, 2, \dots, n\}$ that avoid three term arithmetic progressions is at most ${(2.7)^n} \over 21$ for $n \ge 11$ and at each end of any such permutation, at least ${\lfloor {n \over 2} \rfloor} - 6$ entries have the same parity.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献