The Covering Threshold of a Directed Acyclic Graph by Directed Acyclic Subgraphs

Author:

Yuster Raphael

Abstract

Let $H$ be a directed acyclic graph (dag) that is not a rooted star. It is known that there are constants $c=c(H)$ and $C=C(H)$ such that the following holds for $D_n$, the complete directed graph on $n$ vertices. There is a set of at most $C\log n$ directed acyclic subgraphs of $D_n$ that covers every $H$-copy of $D_n$, while every set of at most $c\log n$ directed acyclic subgraphs of $D_n$ does not cover all $H$-copies. Here this dichotomy is considerably strengthened. Let ${\vec G}(n,p)$ denote the probability space of all directed graphs with $n$ vertices and with edge probability $p$. The fractional arboricity of $H$ is $a(H) = max \{\frac{|E(H')|}{|V(H')|-1}\}$, where the maximum is over all non-singleton subgraphs of $H$. If $a(H) = \frac{|E(H)|}{|V(H)|-1}$ then $H$ is totally balanced. Complete graphs, complete multipartite graphs, cycles, trees, and, in fact, almost all graphs, are totally balanced. It is proven that: Let $H$ be a dag with $h$ vertices and $m$ edges which is not a rooted star. For every $a^* > a(H)$ there exists $c^* = c^*(a^*,H) > 0$ such a.a.s. $G \sim {\vec G}(n,n^{-1/a^*})$ has the property that every set $X$ of at most $c^*\log n$ directed acyclic subgraphs of $G$ does not cover all $H$-copies of $G$. Moreover, there exists $s(H) = m/2 + O(m^{4/5}h^{1/5})$ such that the following stronger assertion holds for any such $X$: there is an $H$-copy in $G$ that has no more than $s(H)$ of its edges covered by each element of $X$. If $H$ is totally balanced then for every $0 < a^* < a(H)$, a.a.s. $G \sim {\vec G}(n,n^{-1/a^*})$ has a single directed acyclic subgraph that covers all its $H$-copies. As for the first result, note that if $h=o(m)$ then $s(H)=(1+o_m(1))m/2$ is about half of the edges of $H$. In fact, for infinitely many $H$ it holds that $s(H)=m/2$, optimally. As for the second result, the requirement that $H$ is totally balanced cannot, generally, be relaxed.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3