Author:
Hajiabolhassan Hossein,Taherkhani Ali
Abstract
In this paper, we investigate some basic properties of fractional powers. In this regard, we show that for any non-bipartite graph $G$ and positive rational numbers ${2r+1\over 2s+1} < {2p+1\over 2q+1}$, we have $G^{2r+1\over 2s+1} < G^{2p+1\over 2q+1}$. Next, we study the power thickness of $G$, that is, the supremum of rational numbers ${2r+1\over 2s+1}$ such that $G$ and $G^{2r+1\over 2s+1}$ have the same chromatic number. We prove that the power thickness of any non-complete circular complete graph is greater than one. This provides a sufficient condition for the equality of the chromatic number and the circular chromatic number of graphs. Finally, we introduce an equivalent definition for the circular chromatic number of graphs in terms of fractional powers. Also, we show that for any non-bipartite graph $G$ if $0 < {{2r+1}\over {2s+1}} \leq {{\chi(G)}\over{3(\chi(G)-2)}}$, then $\chi(G^{{2r+1}\over {2s+1}})=3$. Moreover, $\chi(G)\neq\chi_c(G)$ if and only if there exists a rational number ${{2r+1}\over {2s+1}}>{{\chi(G)}\over{3(\chi(G)-2)}}$ for which $\chi(G^{{2r+1}\over {2s+1}})= 3$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献