Graph Powers and Graph Homomorphisms

Author:

Hajiabolhassan Hossein,Taherkhani Ali

Abstract

In this paper, we investigate some basic properties of fractional powers. In this regard, we show that for any non-bipartite graph $G$ and positive rational numbers ${2r+1\over 2s+1} < {2p+1\over 2q+1}$, we have $G^{2r+1\over 2s+1} < G^{2p+1\over 2q+1}$. Next, we study the power thickness of $G$, that is, the supremum of rational numbers ${2r+1\over 2s+1}$ such that $G$ and $G^{2r+1\over 2s+1}$ have the same chromatic number. We prove that the power thickness of any non-complete circular complete graph is greater than one. This provides a sufficient condition for the equality of the chromatic number and the circular chromatic number of graphs. Finally, we introduce an equivalent definition for the circular chromatic number of graphs in terms of fractional powers. Also, we show that for any non-bipartite graph $G$ if $0 < {{2r+1}\over {2s+1}} \leq {{\chi(G)}\over{3(\chi(G)-2)}}$, then $\chi(G^{{2r+1}\over {2s+1}})=3$. Moreover, $\chi(G)\neq\chi_c(G)$ if and only if there exists a rational number ${{2r+1}\over {2s+1}}>{{\chi(G)}\over{3(\chi(G)-2)}}$ for which $\chi(G^{{2r+1}\over {2s+1}})= 3$.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On inverse powers of graphs and topological implications of Hedetniemi's conjecture;Journal of Combinatorial Theory, Series B;2019-11

2. $$\mathbb {Z}_2$$-Indices and Hedetniemi’s Conjecture;Discrete & Computational Geometry;2019-04-23

3. Hedetniemi's Conjecture and Strongly Multiplicative Graphs;SIAM Journal on Discrete Mathematics;2019-01

4. Strengthening topological colorful results for graphs;European Journal of Combinatorics;2017-08

5. On the odd girth and the circular chromatic number of generalized Petersen graphs;Journal of Combinatorial Optimization;2016-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3