Abstract
A coloring of the $\ell$-dimensional faces of $Q_n$ is called $d$-polychromatic if every embedded $Q_d$ has every color on at least one face. Denote by $p^\ell(d)$ the maximum number of colors such that any $Q_n$ can be colored in this way. We provide a new lower bound on $p^\ell(d)$ for $\ell > 1$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献