Author:
Kolitsch Louis W.,Burnette Michael
Abstract
In 2012 Andrews and Merca gave a new expansion for partial sums of Euler's pentagonal number series and expressed \[\sum_{j=0}^{k-1}(-1)^j(p(n-j(3j+1)/2)-p(n-j(3j+5)/2-1))=(-1)^{k-1}M_k(n)\] where $M_k(n)$ is the number of partitions of $n$ where $k$ is the least integer that does not occur as a part and there are more parts greater than $k$ than there are less than $k$. We will show that $M_k(n)=C_k(n)$ where $C_k(n)$ is the number of partition pairs $(S, U)$ where $S$ is a partition with parts greater than $k$, $U$ is a partition with $k-1$ distinct parts all of which are greater than the smallest part in $S$, and the sum of the parts in $S \cup U$ is $n$. We use partition pairs to determine what is counted by three similar expressions involving linear combinations of pentagonal numbers. Most of the results will be presented analytically and combinatorially.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献