Tree Reconstruction from Triplet Cover Distances

Author:

Huber Katharina T.,Steel Mike

Abstract

It is a classical result that any finite tree with positively weighted edges, and without vertices of degree 2, is uniquely determined by the weighted path distance between each pair of leaves. Moreover, it is possible for a (small) strict subset $\mathcal{L}$ of leaf pairs to suffice for reconstructing the tree and its edge weights, given just the distances between the leaf pairs in $\mathcal{L}$. It is known that any set ${\mathcal L}$ with this property for a tree in which all interior vertices have degree 3 must form a cover  for $T$ - that is, for each interior vertex $v$ of $T$, ${\mathcal L}$ must contain a pair of leaves from each pair of the three components of  $T-v$.  Here we provide a partial converse of this result by showing that if a set ${\mathcal L}$ of leaf pairs forms a cover  of a certain type for such a tree $T$ then $T$ and its edge weights can be uniquely determined from the distances between the pairs of leaves in ${\mathcal L}$. Moreover,  there is a polynomial-time algorithm for achieving this reconstruction. The result establishes a special case of a recent question concerning 'triplet covers', and is relevant to a problem arising in evolutionary genomics.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combinatorial properties of triplet covers for binary trees;Advances in Applied Mathematics;2018-08

2. Minimum triplet covers of binary phylogenetic X-trees;Journal of Mathematical Biology;2017-06-12

3. Reconstructing (Super)Trees from Data Sets with Missing Distances: Not All Is Lost;Molecular Biology and Evolution;2015-02-04

4. Distinguished Minimal Topological Lassos;SIAM Journal on Discrete Mathematics;2015-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3