Abstract
We present an explicit solution of the $A_r$ $T$-system for arbitrary boundary conditions. For each boundary, this is done by constructing a network, i.e. a graph with positively weighted edges, and the solution is expressed as the partition function for a family of non-intersecting paths on the network. This proves in particular the positive Laurent property, namely that the solutions are all Laurent polynomials of the initial data with non-negative integer coefficients.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献