Hamiltonian Intervals in the Lattice of Binary Paths

Author:

Tasoulas I.,Manes K.,Sapounakis A.

Abstract

Let $\mathcal{P}_n$ be the set of all binary paths (i.e., lattice paths with upsteps $u = (1,1)$ and downsteps $d = (1,-1)$) of length $n$ endowed with the pointwise partial ordering (i.e., $P \le Q$ iff the lattice path $P$ lies weakly below $Q$) and let $G_n$ be its Hasse graph. For each path $P \in \mathcal{P}_n$, we denote by $I(P)$ the interval which contains the elements of $\mathcal{P}_n$ less than or equal to $P$, excluding the first two elements of $\mathcal{P}_n$, and by $G(P)$ the subgraph of $G_n$ induced by $I(P)$. In this paper, it is shown that $G(P)$ is Hamiltonian iff $P$ contains at least two peaks and $I(P)$ has equal number of elements with even and odd rank. The last condition is always true for paths ending with an upstep, whereas, for paths ending with a downstep, a simple characterization is given, based on the structure of the path.

Publisher

The Electronic Journal of Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3