Hat Guessing on Books and Windmills
-
Published:2022-01-28
Issue:1
Volume:29
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
He Xiaoyu,Ido Yuzu,Przybocki Benjamin
Abstract
The hat-guessing number is a graph invariant defined by Butler, Hajiaghayi, Kleinberg, and Leighton. We determine the hat-guessing number exactly for book graphs with sufficiently many pages, improving previously known lower bounds of He and Li and exactly matching an upper bound of Gadouleau. We prove that the hat-guessing number of $K_{3,3}$ is $3$, making this the first complete bipartite graph $K_{n,n}$ for which the hat-guessing number is known to be smaller than the upper bound of $n+1$ of Gadouleau and Georgiou. Finally, we determine the hat-guessing number of windmill graphs for most choices of parameters.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献