Extremal Independent Set Reconfiguration
-
Published:2023-07-28
Issue:3
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Bousquet Nicolas,Durain Bastien,Théo Pierron ,Thomassé Stéphan
Abstract
The independent set reconfiguration problem asks whether one can transform one given independent set of a graph into another, by changing vertices one by one in such a way the intermediate sets remain independent. Extremal problems on independent sets are widely studied: for example, it is well known that an $n$-vertex graph has at most $3^{n/3}$ maximum independent sets (and this is tight). This paper investigates the asymptotic behavior of maximum possible length of a shortest reconfiguration sequence for independent sets of size $k$ among all $n$-vertex graphs. We give a tight bound for $k=2$. We also provide a subquadratic upper bound (using the hypergraph removal lemma) as well as an almost tight construction for $k=3$. We generalize our results for larger values of $k$ by proving an $n^{2\lfloor k/3 \rfloor}$ lower bound.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献