Author:
Máčajová Edita,Raspaud André,Škoviera Martin
Abstract
In 1982, Zaslavsky introduced the concept of a proper vertex colouring of a signed graph $G$ as a mapping $\phi\colon V(G)\to \mathbb{Z}$ such that for any two adjacent vertices $u$ and $v$ the colour $\phi(u)$ is different from the colour $\sigma(uv)\phi(v)$, where is $\sigma(uv)$ is the sign of the edge $uv$. The substantial part of Zaslavsky's research concentrated on polynomial invariants related to signed graph colourings rather than on the behaviour of colourings of individual signed graphs. We continue the study of signed graph colourings by proposing the definition of a chromatic number for signed graphs which provides a natural extension of the chromatic number of an unsigned graph. We establish the basic properties of this invariant, provide bounds in terms of the chromatic number of the underlying unsigned graph, investigate the chromatic number of signed planar graphs, and prove an extension of the celebrated Brooks' theorem to signed graphs.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献