Author:
Cai Xing Shi,Holmgren Cecilia
Abstract
In our previous work, we introduced the random $k$-cut number for rooted graphs. In this paper, we show that the distribution of the $k$-cut number in complete binary trees of size n, after rescaling, is asymptotically a periodic function of $\lg n − \lg \lg n$. Thus there are different limit distributions for different subsequences, where these limits are similar to weakly $1$-stable distributions. This generalizes the result for the case $k = 1$, i.e., the traditional cutting model, by Janson (2004).
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献