On Rainbow Hamilton Cycles in Random Hypergraphs
-
Published:2018-06-22
Issue:2
Volume:25
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Dudek Andrzej,English Sean,Frieze Alan
Abstract
Let $H_{n,p,r}^{(k)}$ denote a randomly colored random hypergraph, constructed on the vertex set $[n]$ by taking each $k$-tuple independently with probability $p$, and then independently coloring it with a random color from the set $[r]$. Let $H$ be a $k$-uniform hypergraph of order $n$. An $\ell$-Hamilton cycle is a spanning subhypergraph $C$ of $H$ with $n/(k-\ell)$ edges and such that for some cyclic ordering of the vertices each edge of $C$ consists of $k$ consecutive vertices and every pair of adjacent edges in $C$ intersects in precisely $\ell$ vertices.In this note we study the existence of rainbow $\ell$-Hamilton cycles (that is every edge receives a different color) in $H_{n,p,r}^{(k)}$. We mainly focus on the most restrictive case when $r = n/(k-\ell)$. In particular, we show that for the so called tight Hamilton cycles ($\ell=k-1$) $p = e^2/n$ is the sharp threshold for the existence of a rainbow tight Hamilton cycle in $H_{n,p,n}^{(k)}$ for each $k\ge 4$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献