Author:
Angelopoulos Spyros,Doerr Benjamin,Huber Anna,Panagiotou Konstantinos
Abstract
This paper addresses the following fundamental problem: Suppose that in a group of $n$ people, where each person knows all other group members, a single person holds a piece of information that must be disseminated to everybody within the group. How should the people propagate the information so that after short time everyone is informed? The classical approach, known as the push model, requires that in each round, every informed person selects some other person in the group at random, whom it then informs. In a different model, known as the quasirandom push model, each person maintains a cyclic list, i.e., permutation, of all members in the group (for instance, a contact list of persons). Once a person is informed, it chooses a random member in its own list, and from that point onwards, it informs a new person per round, in the order dictated by the list. In this paper we show that with probability $1-o(1)$ the quasirandom protocol informs everybody in $(1 \pm o(1))\log_2 n+\ln n$ rounds; furthermore we also show that this bound is tight. This result, together with previous work on the randomized push model, demonstrates that irrespectively of the choice of lists, quasirandom broadcasting is as fast as broadcasting in the randomized push model, up to lower order terms. At the same time it reduces the number of random bits from $O(\log^2 n)$ to only $\lceil\log_2 n\rceil$ per person.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deterministic Random Walks for Rapidly Mixing Chains;SIAM Journal on Discrete Mathematics;2018-01
2. Simple, Fast and Deterministic Gossip and Rumor Spreading;Journal of the ACM;2015-12-10
3. Quasirandom Rumor Spreading;ACM Transactions on Algorithms;2014-11-17
4. Deterministic random walks on finite graphs;Random Structures & Algorithms;2014-03-20
5. Randomness in algorithm design;Journal of Physics: Conference Series;2013-12-16