Abstract
Given a graph $G = (V,E)$, an even kernel is a nonempty independent subset $V' \subseteq V$, such that every vertex of $G$ is adjacent to an even number (possibly 0) of vertices in $V'$. It is proved that the question of whether a graph has an even kernel is NP-complete. The motivation stems from combinatorial game theory. It is known that this question is polynomial if $G$ is bipartite. We also prove that the question of whether there is an even kernel whose size is between two given bounds, in a given bipartite graph, is NP-complete. This result has applications in coding and set theory.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献