Author:
López Nacho,Messegué Arnau,Miret Josep M.
Abstract
An almost Moore $(d,k)$-digraph is a regular digraph of degree $d>1$, diameter $k>1$ and order $N(d,k)=d+d^2+\cdots +d^k$. So far, their existence has only been shown for $k=2$, whilst it is known that there are no such digraphs for $k=3$, $4$ and for $d=2$, $3$ when $k\geq 3$. Furthermore, under certain assumptions, the nonexistence for the remaining cases has also been shown. In this paper, we prove that $(4,k)$ and $(5,k)$-almost Moore digraphs with self-repeats do not exist for $k\geq 5$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献