Bounding Mean Orders of Sub-$k$-Trees of $k$-Trees
-
Published:2024-03-22
Issue:1
Volume:31
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Cambie Stijn,McCoy Bradley,Wagner Stephan,Yap Corrine
Abstract
For a $k$-tree $T$, we prove that the maximum local mean order is attained in a $k$-clique of degree $1$ and that it is not more than twice the global mean order. We also bound the global mean order if $T$ has no $k$-cliques of degree $2$ and prove that for large order, the $k$-star attains the minimum global mean order. These results solve the remaining problems of Stephens and Oellermann [J. Graph Theory 88 (2018), 61-79] concerning the mean order of sub-$k$-trees of $k$-trees.
Publisher
The Electronic Journal of Combinatorics