Prefix Exchanging and Pattern Avoidance by Involutions

Author:

Jaggard Aaron D.

Abstract

Let $I_n(\pi)$ denote the number of involutions in the symmetric group ${\cal S}_{n}$ which avoid the permutation $\pi$. We say that two permutations $\alpha,\beta\in{\cal S}_{j}$ may be exchanged if for every $n$, $k$, and ordering $\tau$ of $j+1,\ldots,k$, we have $I_n(\alpha\tau)=I_n(\beta\tau)$. Here we prove that $12$ and $21$ may be exchanged and that $123$ and $321$ may be exchanged. The ability to exchange $123$ and $321$ implies a conjecture of Guibert, thus completing the classification of ${\cal S}_{4}$ with respect to pattern avoidance by involutions; both of these results also have consequences for longer patterns. Pattern avoidance by involutions may be generalized to rook placements on Ferrers boards which satisfy certain symmetry conditions. Here we provide sufficient conditions for the corresponding generalization of the ability to exchange two prefixes and show that these conditions are satisfied by $12$ and $21$ and by $123$ and $321$. Our results and approach parallel work by Babson and West on analogous problems for pattern avoidance by general (not necessarily involutive) permutations, with some modifications required by the symmetry of the current problem.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equidistribution of set-valued statistics on standard Young tableaux and transversals;Advances in Applied Mathematics;2024-04

2. Combinatorics of Exterior Peaks on Pattern-Avoiding Symmetric Transversals;Annals of Combinatorics;2023-09-15

3. On refinements of wilf-equivalence for involutions;Journal of Algebraic Combinatorics;2023-06-07

4. 2-Stack Sorting is Polynomial;Theory of Computing Systems;2017-03-16

5. How to Sort by Walking and Swapping on Paths and Trees;Algorithmica;2017-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3